
MPX: Software for Multiplexing Hardware Performance Counters in
Multithreaded Programs

�

JohnM. May
LawrenceLivermoreNationalLaboratory

johnmay@llnl.gov

Abstract

Hardware performancecounters are CPU registers that
countdataloadsandstores,cachemisses,andotherevents.
Counterdata can help programmers understandsoftware
performance. AlthoughCPUstypicallyhavemultiplecoun-
ters,each canmonitoronly onetypeof eventat a time, and
somecounters canmonitoronly certainevents.Therefore,
someCPUscannotconcurrentlymonitorinterestingcombi-
nationsof events. Software multiplexing partly overcomes
this limitation by using time sharing to monitor multiple
eventson one counter. However, countermultiplexing is
harder to implementfor multithreadedprogramsthan for
single-threadedonesbecauseof certaindifficultiesin man-
aging thelengthof thetimeslices.

Thispaperdescribesa software library calledMPXthat
overcomesthesedifficulties. MPX allows applicationsto
gatherhardware counterdataconcurrently for anycombi-
nationof countableevents.MPXdataaretypicallywithin a
few percentof countsrecordedwithoutmultiplexing.

1 Introduction

For many years,CPUshaveincludedregistersthatcount
various hardware events while code executes. Counted
eventstypically includeload andstorerequests,missesin
Level 1 andLevel 2 (L1 and L2) cacheand in the trans-
lation lookasidebuffer (TLB), floating-point instructions
completed,andsoon. Thecounterswereintendedto help
thedesignersof thehardwareandlow-level softwareeval-
uatetheir systems,andtheir programminginterfaceswere
not availableto generalusers.However, sincecounterdata
can help applicationprogrammerstune their codes,hard-
�
Appearsin Proc. 2001InternationalParallel andDistributedProcess-

ing Symposium,c
�

2001IEEE.Personaluseof this materialis permitted.
However, permissionto reprint/republishthis materialfor advertising or
promotionalpurposesor for creatingnew collective worksfor resaleor re-
distribution to serversor lists, or to reuseany copyrightedcomponentof
thiswork in otherworksmustbeobtainedfrom theIEEE.

ware vendorshave begun to publish the interfaces. Each
vendorusesa differentprogramminginterface,anddiffer-
entCPUtypes(evenfrom thesamevendor)maycountdif-
ferenttypesof events.At leasttwo projectshavedeveloped
uniform interfacesthroughwhich applicationscan access
counterson differentoperatingsystems[1, 5, 6].

Many useful measuresof applicationperformancein-
volve combinationsof events.Cacheutilization, for exam-
ple, is the fraction of load requeststhat aresatisfiedfrom
the cache. Unfortunately, someCPUscannotcount loads
and cachehits (or misses)at the sametime. Although
most CPUshave multiple counters,differentcountersare
designedto monitor different types of events. A single
countercan monitor only one of type of event at a time,
so two eventsthat the hardwaredesignhasassignedto the
sameregistercannotnormally be countedsimultaneously;
theseeventsaresaid to be “conflicting.” In the PowerPC
604earchitecture,for example,loadsandL1 cachemisses
areconflictingevents[4]. Even if all registerscouldcount
every typeof event,ausermightwantto countmoreevents
concurrentlythantherearecounterregisters.

Time sharing(multiplexing) can solve theseproblems.
One register countsdifferent event typesduring separate
timeslices,andthemultiplexing softwarecanestimatehow
many timeseachtypeof eventoccurredif it candetermine
how long the counterspentmonitoringeachevent type as
a ratio of the total measurementperiod. One of the two
maincontributionsof thispaperis atechniquefor determin-
ing this ratioaccuratelyunderawiderangeof measurement
conditions,asdescribedin Section4.

Simple multiplexing algorithms produceadequatere-
sultswhenthey measureonerangeof codeat a time, but
they don’t work well for overlappingmeasurements.In
multithreadedcodes,for example, the user may wish to
monitor the performanceof several threads(running on
the sameor differentCPUs)as they executeconcurrently.
Usersmay also wish to measureoverlappingregions of
codewithin a single thread. The secondmain contribu-
tion of this paperis a setof techniquesfor usingcounter
multiplexing in multithreadedcodesandotheroverlapped

measurements.Section3 briefly describeshow applications
initiate overlappedmeasurements,andSection5 describes
softwarethatimplementsthem.

Thesemultiplexing andoverlappingtechniquesareim-
plementedin a library calledMPX, which hasbeentested
onanIBM RS6000/SPcomputerwith SMPnodesthateach
containfour PowerPC604eCPUs. The nodesrun IBM’ s
AIX 4.3operatingsystem.However, thetechniquesarenot
specificto aparticularprocessoror operatingsystem.MPX
is implementedontopof PAPI [5, 6], asystem-independent
interface for hardware performancecounters. Section6
comparestheaccuracy of MPX countswith nonmultiplexed
countsgatheredusingPAPI.

2 Background and related work

Severalhardwarevendorspublishinterfacesto theirsys-
tems’CPUperformancecounters.ExamplesincludeSGI’s
Perfex [7] andIBM’ s PerformanceMonitor API [3]. Com-
paq’s ProfileMe[2] tool takesa differentapproach;it sam-
ples instructionsas a codeexecutesand determineswhat
hardwareeventseachof theseinstructionscaused.

SomeCPUsand operatingsystemscan measurecom-
binationsof eventsconcurrentlywithout specialsoftware.
Pentiumscan count most events in any counterregister,
althoughmultiplexing would still increasethe numberof
eventsthat can be countedconcurrently. SGI’s IRIX has
built-in countermultiplexing: the systemcan switch the
event that eachregister is countingevery 10 milliseconds.
It computesthe total numberof eventsof a given type by
multiplying theobservedcountfor aneventtypeby number
of eventtypesthatweremultiplexed.

Eachvendorinterfacereflectstheuniquecapabilitiesof
the hardwareand operatingsystem. Sincemany applica-
tions can run on multiple platforms,usersof proprietary
counterinterfacescannotdevelopportableinstrumentation.
Multiplatform interfaces,suchasPCL andPAPI, canmask
someof thedifferencesbetweenplatforms.

The PCL [1] (PerformanceCounterLibrary) project is
basedat theForschungszentrumJülich (a Germannational
researchcenter). It definesa simple interfacefor perfor-
mancecounterson Alpha, MIPS, Pentium,PowerPC,and
UltraSPARC processors.It allowsnestedmeasurementson
overlappingregionsof code,but it doesnot explicitly sup-
portmultithreadingor multiplexing.

ThePAPI [5, 6] (PerformanceApplicationProgramming
Interface)project is basedat the University of Tennessee,
Knoxville. It supportsthesameprocessorfamiliesasPCL.
PAPI allows measurementson overlappingregions,and it
alsoworkswith threadedcode,if thereis threadsupportin
the underlyinghardwarecounterinterface. PAPI wasde-
signedto accommodatemultiplexing, but this featurewas
not in theinitial implementation;indeed,thetechniquesde-

scribedin thispapermaybecomethebasisfor multiplexing
in PAPI. At present,however, MPX is built on top of PAPI
andusesonly its standardinterfaces.

Although multiplatform interfacesattemptto hide sys-
tem dependences,they still work somewhat differently on
eachmachinebecauseof underlyinghardwaredifferences.
Someevent typesmay be countableon somesystemsbut
not on others,andcorrespondingeventscanhave different
meaningson differentmachines.For example,onesystem
might count a floating-pointmultiply-add instructionas a
single floating point operationwhile anothercountsit as
two. Therefore,performancedatagatheredondifferentma-
chinesis not generallycomparable.

3 Event sets

MPX bothusesandimitatesthe PAPI programmingin-
terface. The two systemsdefine an event set structure,
which lists hardwareeventsto be countedtogether. PAPI
and MPX implementevent setsdifferently, so thesedata
structurescannotbe usedinterchangeablybetweenthem,
but the basicideasarethe samefor both systems.A pro-
gramdefinesaneventsetby calling a constructorfunction
with a list of events. Programsinitiate measurementsby
passingan event set to a start function, and countingcan
proceedon multiple event setsat the sametime. In PAPI,
though,counterconflictslimit which setscanrun together.
MPX removesthis restriction.

In both systems,a programcan reador resetcounters
for any running event set. Programscan specify options
for event setsthat definecertainmeasurementcharacteris-
tics, suchaswhethereventsthat occurin kernelmodeare
counted. Thesefeaturesare only partly implementedin
both PAPI and MPX. Both are thread-safeand can count
eventsseparatelyfor differentthreads.At present,they can-
notdefineprocess-wideeventsetsthatcountall eventsin all
threads.AlthoughMPX mimics themajor functionalityof
PAPI, it doesnot includecorrespondingfunctionsfor every
functionin thePAPI library.

4 Multiplexing

Countermultiplexing involvessharinga singlecounter
amongseveral event measurementsover a time period � .
(� andother timesmay be measuredeither in secondsor
in processorcycles.) During this time, the counterwill be
programmedto measuredifferentevent typesin sequence.
Eacheventtype, � , will bemeasuredduringaseriesof time
slices. The durationof the � th slice for event � is ���
	 � , and
����	 � can vary with � . At the end of eachslice, the num-
ber of eventscountedis addedto a cumulative total for � ,
andthecounterwill begin countinga new eventduringthe

next time slice. For eacheventtype,theuserwould like to
know � , the numberof times � occurredduring � . If a
counteris multiplexed,an exact valuefor �� is not avail-
able, sincesomeoccurrencesof � will happenwhen the
counteris recordingotherevent types. However, if � oc-
cursat a reasonablyconstantrateduring � , then �� canbe
estimatedasfollows: Let ��� betheactualcountof � accu-
mulatedover � andlet � ����� � � �
	 � ; thatis, � � is thetotal
timeeventsof type � werecounted.Then

�������� �� ���
Counting � � is easy, but computing� � and � canbemore
difficult, asthefollowing discussionwill show.

MPX triggerstheswitchingof countersfrom oneevent
typeto thenext usingtheUnix interval timerandsignalhan-
dling features.At the beginning of a measurement,MPX
callssetitimer to deliverasignalafteraspecifiedinter-
val (10 millisecondsby default). TheITIMER VIRTUAL
flag is set,causingthe timer to count time only when the
processthatinitiatedit is running.

Oneevent type, ��� , is chosenfrom the user’s eventset,
anda hardwarecounteris programmedto monitor ��� . The
applicationthenproceedswith its computation.Whenthe
timer expires,Unix invokes the signal handler. The han-
dlerhaltscountingof � � , storesthecurrentcount,andstarts
counting ��� . The timer automaticallyresetsitself. When
the last event in the sethasbeencounted,� � is scheduled
again,and this sequencecontinuesuntil the measurement
periodends.

An early implementationof MPX computed��� and �
by countingthenumberof times, � , thateachevent � was
scheduledto be counted. For each � , it computed� �!�
 � � , where � is equalto the fixed timer interval. It then
computed� � � � � � . In the final computationof � , �
appearsin both the numeratorandthe denominator, so its
actualvaluecancelsout. The softwarealsomadea small
correctionto accountfor thepartial time sliceat theendof
ameasurementperiod.

This approachproducedacceptableresults for simple
measurements,but it doesnot work for measurementsin
threadedprograms.Theproblemis thatmany systemshave
onevirtual timerperprocess,notoneperthread.Moreover,
the signalgeneratedwhen the timer expirescanbe deliv-
eredto any thread. Thesesystemshave no way to setup
separatetimers for separatethreads. As the next section
will show, onesignalhandlercanserve all the threadsin a
process,but thevalueof � will vary. Althoughthetimerex-
piresat fixed intervals from the perspective of the process
asa whole,multiple threadsrunningon oneCPUwill have
theirhandlersinvokedatunpredictableintervals.Theprob-
lemis lessseverewheneachthreadrunsonadifferentCPU,
but variationsin thetimeslicefor eachthreadcanstill arise

from the techniqueMPX usesto schedulethe countersin
multiple threads.

To compute � � accurately, the software must measure
� ��	 � separatelyfor eachtime slice of eachevent measure-
ment.MPX doesthisby countingprocessorcyclessimulta-
neouslywith eachevent. This solutionassumesthat pro-
cessorshave two or more event counters,and that every
countercanmeasurecycles.An informal survey of current
CPUssuggeststhattheseassumptionsarevalid. Therefore,
no matterwhat event is chosento run during a given time
slice,MPX canalwayscountcyclessimultaneouslyin an-
othercounter. Eachtime the signalhandlerinitiatesa dif-
ferent event type measurement,it updatesboth � � and a
runningcountof � � . It alsomaintainsa runningcountof
� . With this information,thesoftwarecaneasilycompute
anestimateof � eitherafterameasurementis completeor
while it is still running.

MPX countsonly oneeventtype(otherthancycles)at a
time. An alternative approachwould be to schedulemul-
tiple nonconflictingevent measurementson the available
countersduring eachtime slice. Sincesomeevent types
could thenbemeasuredmoreoften, � � would increasefor
thoseeventtypesandpossiblyproducemoreaccurateesti-
matesof �� . However, analgorithmfor selectingcompat-
ible combinationsof active event typeswould needto bal-
ancethegoalof maximizingcounterusageagainsttheneed
to scheduleeacheventtypeoftenenoughto produceuseful
data. Suchan algorithmwould eitherneedto run at every
time slice,or elsea fixedscheduleof counterusagewould
have to becomputedevery time aneventsetwasstartedor
stopped. The potential increasein accuracy to be gained
from this designdoesnot appearto justify theaddedcom-
plexity, since,as Section6 notes,the accuracy is already
quitegoodin mostcases.

5 Overlapping measurements

Somemeasurementtasksrequirecountermeasurement
periodsto overlap. Figure 1 shows three types of over-
lappingmeasurements:partialoverlap,nesting,andmulti-
threading.Partial overlapoccurswhenanapplicationiniti-
atestwo or moreseparatemeasurements,andonemeasure-
ment period begins beforea precedingperiod hasended.
Nestingoccurswhenonemeasurementperiodoccurscom-
pletelywithin anothermeasurementperiod. Multithreaded
overlapoccurswhen two or more threadscarry out mea-
surements(on the sameor differentregionsof code)con-
currently. Individual threadsmay be scheduledto run on
thesameordifferentCPUs,andthesoftwaremustwork cor-
rectly andaccuratelyin eithercase.However, theresultsof
somemeasurementsmaywell bedifferentin thetwo cases
becausethreadsrunningin parallelmay interactwith each
otherdifferentlyfrom threadsscheduledsequentiallyonthe

Partial overlap

StartCounter(EventSet 1);
(code)
StartCounter(EventSet 2);
(code)
StopCounter(EventSet 1);
(code)
StopCounter(EventSet 2);

Nested

StartCounter(EventSet 1);
(code)
StartCounter(EventSet 2);
(code)
StopCounter(EventSet 2);
(code)
StopCounter(EventSet 1);

Multithreaded
Thread1

StartCounter(EventSet 1);
(code)
StopCounter(EventSet 1);

Thread2

StartCounter(EventSet 2);
(code)
StopCounter(EventSet 2);

Figure 1. Three types of overlapped counter measurements.

sameCPU.
All threecasesrequirea level of abstraction,above the

basichardware,that permitsmultiple concurrentmeasure-
mentsto usethe samecounterregisters. PAPI and some
vendor-specificlibrariesprovide this abstraction.In PAPI,
eacheventsetmaycontainoneor moreevents,upto theto-
tal numberof countersavailableon theCPU.Severalevent
setscanbedefinedandrun in overlappingregionsof code,
aslongasthey containno conflictingevents.

Overlapping measurementspresenttwo further chal-
lengeswhenthecounterlibrary supportsmultiplexing:

" Eachthreadmustcorrectlyexecutetheschedulingal-
gorithm that sharesthe counterregistersamongthe
eventtypesbeingmeasured.

" The multiplexing library must attribute cycles and
eventsmeasuredduringa time slice to multiple event
sets.

5.1 Multithreading

MPX hasbeenimplementedonanIBM RS6000/SPwith
four CPUspernode.ThesystemrunsAIX 4.3,which has
per-process(ratherthanper-thread)timersandsignalhan-
dling. Therefore,onetimermustserveall thethreadsin the
process.

MPX maintainsa list of thethreadsfor which theappli-
cationhasrequestedcountermeasurements(called“count-
ing threads”). When the timer expires and triggers a
signal, the handlermay run in any one of the process’s
threads.This “timer handlingthread”mightnotbeacount-
ing thread,andit might notevenberunningusercode.The

handlerfunction will traversethe list of countingthreads
andsenda SIGVTALRM signalto eachone(exceptitself)
using the pthread kill function. (Despite its name,
pthread kill can send any kind of signal, not just
SIGKILL.) Thehandlerwill alsoincrementaglobalcounter
of threadsthat shouldrespondto thesesignals(Figure2).
The timer handlingthreadwill thenexecutethe restof the
handlercode,asdescribedbelow. Eachcountingthreadre-
ceiving a signalwill activate the samesignalhandlerthat
the timer handlingthreadused.However, unlike the timer
handlingthread,these“receiving threads”mustnot reissue
thesignal,or they would createanendlesschainof signals.
Instead,they examinetheglobalcounter;if it is nonzero,a
threadwill know that it is a receiving threadratherthana
timer handlingthread.It will decrementtheglobalcounter
andexecutethe restof the handlercode. The counterwill
reachzero when the last receiving threaddecrementsthe
global counter. When the timer expires again,the thread
respondingto the signalwill recognizethat it is the timer
handlingthread.

The timer automaticallyresetsitself to deliver another
signal after the specifiedinterval hasexpired again. Po-
tentially, this could happenbeforeall the threadshad re-
spondedto theprevioussignal.If thethreadarbitrarilycho-
senby theoperatingsystemto handlethesignalalreadyhas
a pendingsignalfrom apthread kill call, thenew sig-
nal will simply be dropped. If the chosenthreaddoesnot
havea pendingsignal,it will invoke its handlerandbehave
as a receiving thread. The global counterwill be decre-
mentedan extra time in that case,and the last receiving
threadto handleits signalwill find the global counterhas
reachedzero. It will thereforebehave asa timer handling

static int threads responding = 0
lock(counting thread list lock)
if(threads responding == 0) # // timer-handling thread

for each counting thread t other than this thread #
++threads responding
pthread kill(t, SIGVTALRM) // signal thread t$

$
else --threads responding // receiving thread

unlock(counting thread list lock)

if(this thread is counting) #
// Code for recording event and cycle counts
// and switching the current event goes here.$

Figure 2. Pseudocode for managing timer signals in a multithreaded program.

threadandreinitiatethedistributionof signals.If timersig-
nalscontinueto arrive fasterthanthehandlerscanoperate,
the handlerswill run correctly, but the programwon’t get
muchwork done.Thissituationis unlikely to arisein prac-
tice because,asSection6 shows, thetimer interval is typi-
cally muchlargerthantherunningtimeof thehandler.

In analternative implementation,thehandlerswerepro-
grammedto restartthe timer only after the last receiving
threadhadfinishedexecutingits handler. However, in some
casessignalsweredropped,causingthe handlersto cease
operatingentirely.

5.2 Managing overlap

MPX usesthe PAPI infrastructure,which can already
handle overlapping measurements. However, handling
overlapfor multiplexedcountersrequiresadditionaleffort.

In PAPI, if a programstartsan event setwhenanother
setis alreadyrunning,PAPI noteswhich individual events
appearin both setsandrecordstheir currentcounts. Each
event in thenew setthat is not alreadyrunningis assigned
to a counter, provided thereareno conflicts. If a conflict
is found,PAPI returnsanerrorcodeinsteadof startingthe
new set.

MPX usesa “mastereventlist” to manageoverlap.This
list includesall theeventsthatappearin theMPX eventsets
createdby a particularthread.Eachdistinct event appears
only oncein the list, andMPX permitsan event set to be
usedonly by the threadthat createdit. The list maintains
a cumulative countof ��� and ��� (the observed countand
event measurementtime) for eachevent. Eachevent also
carriesa referencecount, which indicateshow many dif-
ferentMPX event setsusethat event, andan “activation”
countthat indicateshow many of theseevent setsarecur-

rently running.An activationcountgreaterthanzeromakes
aneventeligible to bescheduled.Eachthreadhasno more
thanoneeventdesignatedasthe“currentevent;” this is the
eventtypethat thehardwareis actuallycountingat a given
moment(alongwith cycles). If no eventsetfor a threadis
active,thenthereis no currentevent.

Whenan MPX eventset is started,the activationcount
for eachof its eventsis incremented,andif thereis no cur-
rent event,oneis chosenfrom this set. MPX alsorecords
thecurrentvaluesof ��� and ��� for eacheventin theset.For
eventsthatarenot alreadyactive,thesevalueswill bezero.

When the handlerfor a threadexecutes,it first deter-
mineswhetherto sendany additionalsignals,asdescribed
in Section5.1. Thenit stopsthe currentevent (if any) for
that thread,addsthe countervalueandthe cycle count to
� � and � � , andselectsthenext active event from themas-
ter list. Thehardwareis programmedto begin countingthis
new currentevent. MPX relieson the underlyingcounter
softwareto gatherthread-specificcounterdata.

WhenanMPX eventsetis stoppedor read,thesoftware
readsthecurrentstoredvaluesof � � and � � for eachevent
andsubtractsthe initial valuesrecordedearlierto compute
� � and � � for the periodduring which the event set was
running.Thesoftwarealsodetermineswhetherthethread’s
currenteventis amongtheeventsin thesetbeingread.If so,
thecounterandcyclecountfor thateventarereadandadded
to the running total. (A similar correctionfor the current
event is appliedwhenan event set is started.) Eachevent
setalsomeasures� (thetotal durationof themeasurement
period)while it is running,andwith this informationMPX
canestimate�� , the total eventcount,for eachevent type
asdescribedearlier.

When an MPX event set is destroyed, the reference
countsfor the correspondingeventsin the masterlist are

decremented,and any event type whosereferencecount
reacheszerois removedfrom themasterlist.

6 Performance

This sectiondescribestheaccuracy andtheoverheadof
theMPX measurements.

The default time slice % for multiplexing is 10 millisec-
onds. (In the version of AIX usedfor thesetests,non-
privilegeduserscannotset shortertimer intervals.) How-
ever, thereis no guaranteethat the actualinterval for each
countermeasurementwill becloseto this valuebecauseof
the schedulingcomplexities describedin Section4. The
length of a time slice limits the granularity of measure-
mentfor MPX. If themeasurementperiod � is lessthanthe
time slice,only thefirst event typescheduledwill bemea-
sured;othereventtypeswill not becounted.In general,for
eventsetsthatcontain & eventtypes,measurementperiods
of �(')%+*�&-,).0/ will not producedatafor someevents.

Figure3 showstheaccuracy of themultiplexedmeasure-
mentscomparedto the nonmultiplexed measurementsfor
four event types. Thesemeasurementswere taken as fol-
lows: a seriesof loopsperformingfloating-pointmultipli-
cationandadditionwererun for specifiednumbersof iter-
ations,rangingfrom 1 �32 to 1 �54 by whole powersof two.
For a 10 millisecondtime slice on the 332 MHz test sys-
tem, % � .76 ms 8:9;9;1 MHz � 9 � 9;1<8�.76;= cycles. For
four multiplexedevents,& �?> , soameasurementperiodof
�A@�%B& � .79 � 9 million cycleswill producecompletedata.
Thecyclecountsfor the 1 �32 -iterationloopsrangedfrom 5.3
million to 8.6million, sotestsonloopsof thissizeproduced
validdatafor only someof theevents;therestwerereported
aszero.Thecomputationsuseddatastoredin largearrays,
andthreeseparateloopstypeswereexecuted:onewastiled
to maximizeL1 cacheutilization,onewasuntiled,andone
usedrandomindirect array referencesto minimize cache
reuse. For eachloop, the test programcountedtotal cy-
cles,L1 datacachemisses,total floating point operations
(FLOPs),andnumberof load requests.First, MPX mea-
suredall theseeventsconcurrently, andthenthetestswere
repeatedwith PAPI measuringeachevent type separately.
For theindirectaddressingmeasurements,thetestsoftware
usedthesamesequenceof indirectarrayreferencesfor both
theMPX andthePAPI measurements.Thegraphsshow the
ratioof thevaluesmeasuredusingMPX to thecorrespond-
ing valuesmeasuredusingPAPI alone.Althoughthereare
a few outliers,especiallyfor lower numbersof eventsand
for multithreadedmeasurements,the MPX measurements
wereusuallywithin 5% of the PAPI numbers.Frequently,
theresultsagreedwithin 1%.

The most significant inaccuraciesappearedin the L1
cachemissmeasurementsfor the tiled loops. MPX over-
estimatedthecountsby up to 70%. Theseerrorsareprob-

ably dueto cachepollution by the MPX handlersoftware.
Eachtime thehandlerruns,it evicts somedatafrom theL1
cache.Whenthehandlerreturns,thecomputationloop in-
cursnumerouscachemissesthat would not have occurred
if the handlerhadnot run. Of course,thesecachemisses
alsooccurfor theuntiledandindirectaddressingloops,but
thelatter two loopswould have incurredcachemissesany-
way becausethey arenot tunedfor goodcacheutilization.
Therefore,thenumberof excessmissesdueto cachepollu-
tion by thehandleris muchgreaterfor thetiled loops.The
exactnumberof excesscachemissesvarieswidely, but typ-
ical valuesarein therangeof a few thousandperexecution
of the handlerfor the tiled loopsandfew hundredfor the
otherloops. Thenumberof excesscachemissesgrows for
the tiled loopswith longerrunsbecauseeachexecutionof
thehandlercausesanew setof cachemisses,whereaswith-
out the intrusionof the handler, the tiled loop would nor-
mally incursmany missesinitially asit broughtdatainto the
cache,but thenit would reacha steadystatewith far fewer
misses.Inaccuratecachemissmeasurementsfor computa-
tions with highly tunedcacheusageis the main drawback
of theMPX multiplexing software.

For themultithreadedtests,multiplexing wassomewhat
lessaccuratethan for single threading,but still generally
quitegood(Figure4). Thecyclecountdataappearsto show
significantinaccuracy for all measurementtypes,but this
datais misleading. For the multithreadedtests,the actual
run timesof the testsdo vary somewhat. Sincethe MPX
andPAPI cycle countsarefor differentruns,the disagree-
ment betweenthe two is due to actualdifferencesin run
time, not inaccuratemeasurement.In fact, thecycle count
datafor MPX is very accuratebecauseMPX countscycles
continuallyin oneof theregisters.Any differencesbetween
MPX andPAPI shouldbe dueonly to the overheadof the
MPX software(discussedat theendof this section).Sepa-
ratetestswereconductedin whichthecyclecountwasmea-
suredusingPAPI andMPX simultaneouslyduringanMPX
multiplexedmeasurement.(This waspossiblebecausethe
PowerPC604ecanmonitor cyclesin any of its four coun-
ters;MPX usedtwo of theseregistersat a time, andPAPI
usedoneof the others.) In thesetests,the PAPI andMPX
cyclecountsagreedwithin 1%.

Themainoverheadof theMPX softwareis in thehandler
that respondswhenthe timer expires. For single-threaded
programs,thishandlerexecutedin about160microseconds
on thetestsystem,andvaryingthenumberof eventsmulti-
plexeddidn’t changethistimesignificantly. (With noevents
being counted,the overheaddroppedto 50 microseconds
or less.) For programswith four threadson a four-CPU
node,the handleroverheadvaried from about170 to 215
microseconds.Thesenumbersdo not includetheoverhead
of thesystemsoftwarethatinvokedthesignalhandler. Not
all of thehandlertimeappearsin thecyclecountfor amea-

0.9

0.95

1

1.05

1.1

1.E+05 1.E+06 1.E+07 1.E+08

FLOPs

0.9

0.95

1

1.05

1.1

1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Loads

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Level 1 Data Cache Misses

0.9

0.95

1

1.05

1.1

1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

Cycles

C
Untiled loop D Tiled loop E Indirect addressing

Figure 3. Accurac y of MPX measurements compared to PAPI-onl y measurements as a function of
the number of events counted. Values greater than one indicate that MPX overestimated the event
count; values less than one indicate underestimation. Measurements in this figure were made on a
single-threaded program.

suredprogram,becausethehardwarecountersarestopped
partwaythroughthehandlerandrestartedneartheend.The
interveningcomputationto updatevariouscountsandselect
thenext currenteventhappen“off theclock.” Of course,the
total overheaddoesaddto the wall-clock time of the pro-
gram,but sincethe handlerrunsonly aboutonceevery 10
milliseconds,theeffecton run time is small.

7 Conclusions

Ideal hardwareperformancecounterswould be able to
measureany combinationof eventsconcurrently. However,
sincemostcurrentCPUdesignslack this flexibility , multi-
plexing is a usefulalternative. For coderegionsthatrun for
a reasonablylong time, multiplexing canproduceaccurate

performancedatawith minimaloverhead.
The softwaredescribedin this paperimplementsmulti-

plexing on top of the PAPI library, and it supportspartly-
overlapped,nested,andmultithreadedmeasurements.Fu-
ture enhancementsto this software may include imple-
menting more PAPI functionality (or merging the soft-
ware into PAPI) and improving accuracy for short mea-
surementperiodsand multithreadedprograms. MPX is
availablefor downloadfrom http://www.llnl.gov/
CASC/download/download_home.html.

Acknowledgments

I thankPhil Mucci andthePAPI teamfor developingthe
software on which MPX is based. Phil was very helpful

0.9

0.95

1

1.05

1.1

1.E+05 1.E+06 1.E+07 1.E+08

FLOPs

0.9

0.95

1

1.05

1.1

1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Loads

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Level 1 Data Cache Misses

0.9

0.95

1

1.05

1.1

1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

Cycles

C
Untiled loop D Tiled loop E Indirect addressing

Figure 4. Accurac y of MPX measurements for a program running four threads. See the text for a
discussion of the cycle count data.

in discussingapproachesto multiplexing, answeringques-
tions,andrespondingto problemreports.DeborahWalker
and Bronis de Supinskiof LawrenceLivermoreNational
Laboratorymademany usefulcommentson earlydraftsof
this paper. Bronisalsosuggestedimprovementsin thedata
collectiontechniques.

This work was performedunder the auspicesof the
U.S. Departmentof Energy by University of California
LawrenceLivermoreNational Laboratoryunder contract
numberW-7405-Eng-48.UCRL-JC-140186Rev 1.

References

[1] R. Berrendorf and H. Ziegler. PCL—ThePerformance
CounterLibrary: A CommonInterfaceto AccessHardware
PerformanceCounters on Microprocessors (Version 1.3).

CentralInstitute for Applied Mathematics,ResearchCentre
Jülich GmbH,Jülich, Germany, November1999.

[2] J. Dean,J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and
G. Chrysos. ProfileMe: Hardware supportfor instruction-
level profiling on out-of-orderprocessors. In Proceedings
ThirtiethAnnualIEEE/ACMInternationalSymposiumonMi-
croarchitecture, pages292–302,December1997.

[3] F. E. Levine andC. P. Roth. A programmer’s view of per-
formancemonitoring in the PowerPCmicroprocessor. IBM
Journalof Research andDevelopment, 41(3),May 1997.

[4] Motorola, Inc. PowerPC604eRISCMicroprocessorUser’s
Manual, 1998.

[5] P. J. Mucci, S. Browne, C. Deane,and G. Ho. PAPI: A
portableinterfaceto hardwareperformancecounters.In De-
partmentof DefenseHPCMPUsers GroupConference1999,
June 1999. http://icl.cs.utk.edu/projects/
papi/dodugm99/papi.html.

[6] Performancedata standardand API. http://icl.cs.
utk.edu/projects/papi/, June2000.

[7] M. Zagha,B. Larson,S. Turner, andM. Itzkowitz. Perfor-
manceanalysisusing the MIPS R10000performancecoun-
ters.In Proceedingsof Supercomputing’96, November1996.

